Given points P=(-3,4) and Q=(1,6), find

- (a) The slope of the line containing P and Q.
- (b) The coordinates of the midpoint M of the segment PQ.
- (c) The slope of the line through M and perpendicular to segment PQ.
- (d) The equation of the line through M and perpendicular to segment PQ.

Given two points on a line the slope is given by

So the slope of the line containing P and Q is $\frac{6-4}{1-(-3)} = \frac{2}{4} = \frac{1}{2}$

• Given two points on a line, the midpoint is given by

- So the midpoint of the segment PQ is $\left(\frac{-3+1}{2}, \frac{4+6}{2}\right) = (-1, 5)$.
- Given two non-vertical perpendicular lines, their slopes are negative reciprocals on each other.

Since the slope of the line through PQ is $\frac{1}{2}$, the slope of the perpendicular line is -2.

• The point-slope form for the equation of a line with slope m and passing through the point (x_1, y_1) is given by

$$y-y_1=m(x-x_1)$$

• We now obtain the equation of the line through M and perpendicular to segment PQ. Its slope is -2 and it passes through M = (-1,5). So,

$$y-5 = -2(x+1)$$
 or $y = -2x+3$